Bounding the Cost of Search-Based Lifted Inference
نویسندگان
چکیده
Recently, there has been growing interest in systematic search-based and importance sampling-based lifted inference algorithms for statistical relational models (SRMs). These lifted algorithms achieve significant complexity reductions over their propositional counterparts by using lifting rules that leverage symmetries in the relational representation. One drawback of these algorithms is that they use an inference-blind representation of the search space, which makes it difficult to efficiently pre-compute tight upper bounds on the exact cost of inference without running the algorithm to completion. In this paper, we present a principled approach to address this problem. We introduce a lifted analogue of the propositional And/Or search space framework, which we call a lifted And/Or schematic. Given a schematic-based representation of an SRM, we show how to efficiently compute a tight upper bound on the time and space cost of exact inference from a current assignment and the remaining schematic. We show how our bounding method can be used within a lifted importance sampling algorithm, in order to perform effective Rao-Blackwellisation, and demonstrate experimentally that the Rao-Blackwellised version of the algorithm yields more accurate estimates on several real-world datasets.
منابع مشابه
A heuristic approach for multi-stage sequence-dependent group scheduling problems
We present several heuristic algorithms based on tabu search for solving the multi-stage sequence-dependent group scheduling (SDGS) problem by considering minimization of makespan as the criterion. As the problem is recognized to be strongly NP-hard, several meta (tabu) search-based solution algorithms are developed to efficiently solve industry-size problem instances. Also, two different initi...
متن کاملEfficient Lifting for Online Probabilistic Inference
Lifting can greatly reduce the cost of inference on firstorder probabilistic graphical models, but constructing the lifted network can itself be quite costly. In online applications (e.g., video segmentation) repeatedly constructing the lifted network for each new inference can be extremely wasteful, because the evidence typically changes little from one inference to the next. The same is true ...
متن کاملTowards Completely Lifted Search-based Probabilistic Inference
The promise of lifted probabilistic inference is to carry out probabilistic inference in a relational probabilistic model without needing to reason about each individual separately (grounding out the representation) by treating the undistinguished individuals as a block. Current exact methods still need to ground out in some cases, typically because the representation of the intermediate result...
متن کاملLifted First-Order Belief Propagation
Unifying first-order logic and probability is a long-standing goal of AI, and in recent years many representations combining aspects of the two have been proposed. However, inference in them is generally still at the level of propositional logic, creating all ground atoms and formulas and applying standard probabilistic inference methods to the resulting network. Ideally, inference should be li...
متن کاملApproximate Lifted Belief Propagation
Lifting can greatly reduce the cost of inference on firstorder probabilistic models, but constructing the lifted network can itself be quite costly. In addition, the minimal lifted network is often very close in size to the fully propositionalized model; lifted inference yields little or no speedup in these situations. In this paper, we address both these problems. We propose a compact hypercub...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015